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Abstract

The major approaches toward kinematic calibration are unified
by considering an end-point measurement system as forming a
joint and closing the kinematic loop. A calibration index is in-
troduced, based on the mobility equation, that considers sensed
and unsensed joints and single and multiple loops and ex-

presses the surplus of measurements over degrees of freedom at
each pose. Past work using open-loop calibration, closed-loop
calibration, and screw axis measurement is classified according
to this calibration index. Numerical issues are surveyed, in-

cluding task variable scaling, parameter variable scaling, rank
determination, pose selection, and input noise handling.

1. Introduction

Calibration is at the heart of experimental and autono-
mous robotics. For experimental robotics, without careful
controls and calibration, the significance or veridicality of
results cannot be gauged. We should expect to spend most
of our experimental effort in calibration and relatively
less in actually running the experiments in robot control
(Hollerbach and Hunter 1990). For autonomous robotics,
a robot will need to develop and periodically update its
internal model for best performance. These intuitions
may explain the considerable recent literature in robot
calibration. Ideally, the calibration methods should be sta-
tistically robust, there should be a variety of approaches
for different circumstances, and metrology equipment
should be sufficiently accurate, convenient to use, and
not too expensive. The robot should also be capable of
calibrating itself with minimal human involvement.

This article focuses primarily on kinematic calibra-
tion methods. A large variety of methods have been
proposed that differ according to measurement sys-
tem (open-loop methods), passive end-point constraints
(closed-loop methods), and pose organization (screw axis
measurement methods):

1. Open-loop methods. The large majority of proposed
methods require an external metrology system to
measure the pose of an end effector. The number of

measured pose components can vary from six (full
pose) to just one component of pose. In open-loop
methods, individual poses are attained by moving all
the joints, and the kinematic parameters are found
from a nonlinear optimization of the total pose set
(Mooring et al. 1991).

2. Closed-loop methods. By attaching the end effector
to the ground and forming a mobile closed kine-
matic chain, calibration is achieved using joint angle
sensing only, without any external metrology sys-
tem (Bennett and Hollerbach 1991). The end-point
constraints may vary from full rigidity (six degrees
of constraint) to only one motion constraint, and
there may be multiple kinematic loops. Parameter
estimation proceeds as for the open-loop methods.

3. Screw-axis measurement methods. These methods

identify individual joint axes as lines in space. From
this knowledge, the kinematic parameters can be
found analytically without the numerical search
requirements of the open- and closed-loop methods
(Sklar 1989). In circle point analysis (CPA), poses
are organized by moving the end point in a circle by
one joint at a time and measuring its position (Stone
1987).

The distinctions among these methods are often small

and arbitrary. For example, certain open-loop methods
constrain some components of pose, as well as measure
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others; this mixes aspects of open- and closed-loop meth-
ods. Furthermore, parallel mechanisms have mixtures of
sensed and unsensed joints, and these unsensed joints are
formally no different from passive task kinematics for
closed-loop methods.

I.]. The Calibration Index

Given what is becoming a bewildering variety of kine-
matic calibration approaches, it is not always clear what
is the relationship among such approaches and what are
the advantages or disadvantages. It is a goal of this article
to provide a unifying taxonomy as follows.
By viewing the external measurement system as form-

ing a joint that closes the base with the end effector,
all of the methods above can be considered as closed-

loop methods (Wampler and Arai 1992; Wampler et al.
1995). In such closed loops, some of the joints may be
sensed (due to joint angle sensors or measured compo-
nents of pose), while other joints may be unsensed (due
to unsensed joint angles, passive unsensed end-point con-
straints, or unmeasured components of pose).

Because everything is now a closed loop, one may
therefore employ the mobility equation to determine
the degrees of freedom of the resulting mechanism. If
the number of joint sensors (including the measurement
&dquo;joint&dquo;) exceeds the mobility, then calibration is possi-
ble. The excess of sensing over mobility is termed the
calibration index, which represents the number of in-

dependent equations per pose available for calibration.
Previous methods can then be categorized and compared
based on their calibration indices. This viewpoint is espe-
cially useful for multiple-loop calibration, where because
of mechanism complexity it may be difficult to compare
methods. This viewpoint also considers as equivalent a
measurement of a pose component or a constraint of a

pose component, thereby unifying open- and closed-loop
methods, which are now termed kinematic loop methods,
discussed in Section 2.

1.2. Numerical Issues

Numerical issues can critically affect the accuracy of
calibration. These include task variable scaling, parameter
variable scaling, rank determination, pose selection, and
handling input noise. In particular, scaling issues are
not often addressed in the calibration literature, while
consideration of input noise is practically absent.

. Task variable scaling addresses differences in ac-
curacies with which different components of pose
are measured and in mixing units such as radians
and meters in a least-squares objective function.

The general solution is weighted least squares, par-
ticularizations of which include the Gauss-Markov
estimate.

~ Parameter variable scaling addresses (potentially
vastly) different scales of the parameters, and what
effect this might have on numerical conditioning.
Solutions include column scaling and model-based
scaling. Weighted a priori estimates of nominal
parameter values can be incorporated into the ob-
jective function to yield damped least squares, a
particularization of which is the minimum variance
estimate, related to the Kalman filter.

~ Rank determination addresses the identifiability of
the desired kinematic parameters and is handled

through singular value decomposition. One may
proceed either by model reduction or by zeroing
small singular values.

~ Pose determination involves the selection of suffi-

cient poses for robust identification by the use of
various observability measures. A formal correspon-
dence between proposed observability measures and
redundancy resolution measures in a different area
of robotics is drawn.

~ Last, input noise (i.e., joint angle measurement
noise) is often significant relative to output noise
(i.e., end-point pose measurement noise). In fact,
for the closed-loop methods there is practically
no output noise (except for attachment backlash),
and so it is inappropriate to minimize the output
prediction error. It is well known that input noise
leads to bias errors in estimation. The method
to handle input noise is total least squares or or-
thogonal distance regression. An extension is the
implicit loop method (Wampler et al. 1995), which
is based on the viewpoint of all calibration meth-
ods as closed-loop methods (leading to an implicit
constraint equation) and places all measurements
(whether joint or end-point) on an equal footing.

1.3. Screw Axis Measurement

The last section reviews screw axis measurement meth-

ods, which determine the individual joint axes as lines in
space.

~ In CPA, single joints are moved at a time in a circle
while a point on the end effector is measured. Re-
cently, triaxial accelerometers have been employed
instead of position sensors.

~ In Jacobian measurement methods, the joint screws
are all determined simultaneously by measuring
the Jacobian matrix. The Jacobian matrix may be
measured using either end-effector velocity sensing
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plus joint velocity sensing, or end-effector wrench
sensing plus joint torque sensing.

As opposed to the nonlinear parameter search in the
kinematic loop methods, a recursive procedure can be
employed to extract the parameters from the joint screws
quite straightforwardly. We also examine two methods
that are not perfectly captured by this taxonomy.

2. Kinematic Loop Methods
2.1. Open-Loop Calibration

The primary calibration method has been open-loop kine-
matic calibration, in which a manipulator is placed in a
number of poses and the complete or partial end-point
pose is measured (Mooring et al. 1991). The phrase open-
loop refers to an end point that is positioned freely in
space. In the following, the developments are presented
for all-rotary joint manipulators but are easily recast to
include prismatic joints. For a single-loop L-link ma-
nipulator, the forward kinematic equation using the
Denavit-Hartenberg (1955) (DH) kinematic parameters
is:

where x2 = the 6-vector for end-point position and ori-
entation (e.g., Euler angles), i = the pose number for
1 < < P, P = the total number of poses, L = the
number of manipulator links, g = the corresponding for-
ward kinematics vector function, (Ji = the vector of joint
angles, ex = the vector of skew angles between neighbor-
ing joint axes, a = the vector of distances between joint
axes along their common normals, and s = the vector
of offsets along joint axes between neighboring com-
mon normals. To locate an arbitrary tool frame in the end
point, an extra DH frame is required to yield the required
six parameters; thus two parameters can be conveniently
set to some simplifying constants. Moreover, a metrology
system will often have an intrinsic coordinate system with

respect to which measurements are made, and this coor-
dinate system must be related to the robot’s base. Thus,
the dimensions of the DH parameter vectors are usually
N = L + 2. Although a variety of kinematic parameter-
izations have been proposed, the use of DH parameters
is quite sufficient (Hollerbach 1989). The case of nearly
parallel neighboring joint axes is well handled by using
the modified Hayati parameters (Hayati and Mirmirani
1985).
The DH parameters represent the geometric compo-

nents of the kinematic parameters. There are additionally
nongeometric components, due primarily to joint charac-
teristics, that make the true joint angles different from the
joint sensor readings. We adopt the simple example:

where 1/Ji = the vector of joint angle sensor readings,
I = the vector of joint angle offsets, and k = the vector
of joint angle gains. In case there are transmission ele-
ments such as gears, one may also have to account for

other nongeometric factors such as gear stiffness, eccen-
tricity, and backlash (Whitney et al. 1986).

Suppose for expository purposes that the joint model
(2) is sufficient and is now substituted into (1). Also,
lump all unknown kinematic parameters into a vector 0:

where 0 = (0, a, s, -y, k) and R = the dimension of
cpo Next treat the joint position sensor readings qb&dquo; as
constants that, along with constant or known kinematic

parameters, are incorporated into a new forward kine-
matic function f’ derived from (3):

As discussed later, not all six components of pose are

required for calibration, and (4) should be reduced in
dimension to reflect partial pose measurement; the vector
components would be

where K = the number of measured pose components.
The mechanism is moved into a sufficient number P

of poses to generate enough constraints to identify the
parameters of interest. The equations are combined for all
the poses:

- .. ~-..

2.2. Closed-Loop Method

A disadvantage of the open-loop method is that an ex-
ternal metrology system is required. In recent years,
an alternative closed-loop method has been proposed,
whereby the end point is attached to the environment,
and no external sensors are required (Bennett and Holler-
bach 1988, 1989, 1991). A mechanism forms a single
closed chain, which has to be mobile. Scenarios include
a redundant manipulator with fixed end point or two
nonredundant arms grasping. The only requirement is that
the total number of degrees of freedom in the loop, in-
cluding the ground degrees of freedom (DOFs), is at least
seven to have mobility.
The forward kinematics apply as before, but now as

loop closure equations. Because the origin in the loop can
be placed anywhere in the chain, it can be placed at the
end point. The kinematic equation (4) for a single pose i
then becomes

 © 1996 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at UNIV OF UTAH on November 19, 2007 http://ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com


576

where the &dquo;measured&dquo; end-point position and orienta-
tion x’ is zero by definition. Analogous to partial pose
measurement, not all components of pose need be con-
strained ; there may be passive unsensed degrees of
freedom at the end point. Again, let K represent the
dimension of (7), or the number of degrees of constraint.
Combining all poses, one obtains the closed-loop counter-
part to (6):

There are some limitations. At least one length para-
meter must be known absolutely in order to scale the
kinematic loop. End-point measurements or linear trans-
ducers for prismatic joints automatically provide this
length reference. Because the end effector is constrained,
the attainable configurations are restricted, and observabil-
ity may be a problem. For the nongeometric parameters,
joint gains provide particular problems: if the gains k in
(2) are zero, then no joint readings a/1 influence the loop
closure equations. There is a strong attraction of the non-
linear optimization to this trivial solution. Bennett and
Hollerbach (1990) proposed a solution to determine one
of the gains independently. This problem does not nor-
mally arise in open-loop calibration, because the gain of
the pose measurement is known independently.

2.3. Unification of Open- and Closed-Loop Methods

In Wampler and Arai (1992); and Wampler et al. (1995) a
framework was suggested that unifies the open-loop and
closed-loop calibration methods by casting the open-loop
method as a closed-loop method. If the end point is un-
constrained, an external sensor that completely measures
the end-point pose may be considered to form a 6-DOF
measured joint between end effector and ground. Hence
the loop is closed through the sensor, and a new loop
closure equation can be written from (6):

0 = f(~) - ~ = f’(d3)~ (9)

where the external measurements x are treated as con-
stants in f’. This equation now has the same form as
the closed-loop equation (8). The term kinematic loop
methods is therefore coined to cover both the open- and

closed-loop methods.
With this unification, a key issue is the number of un-

sensed joints in the kinematic loop. These unsensed joints
may arise in two ways: (1) some joints in the physical
linkage have no sensors, or (2) the end point is only par-
tially constrained or measured. Any unsensed joints must
be eliminated through kinematic constraints derived from
the loop closure equations. Since in a single loop there
are six loop closure equations, up to five unsensed joints
are allowed in the kinematic loop, which are eliminated
by using five of these equations to leave one equation for
calibration at each pose.

2.4. Multiple Closed Loops

Recently, extensions of the closed-loop method to multi-
ple closed loops have been proposed by several authors.
One possibility for this extension is to write a loop clo-
sure equation (8) for each loop, then perform calibration
with these combined equations (Wampler and Arai 1992;
Wampler et al. 1995):

for each loop j. One problem in combining the equations
for multiple loops is to eliminate unsensed degrees of
freedom.

2.5. The Calibration Index

A bewildering variety of kinematic calibration methods
have been proposed that vary by the type of end-point
sensing, the type of end-point constraints, and by the
number of kinematic loops. We present a calibration in-
dex to classify all of these methods. Because all methods
can be viewed as closed-loop methods, each closed-loop
mechanism will have a certain number of degrees of free-
dom given by the mobility index (McCarthy 1990):

where AI = mobility index; L = number of links, in-
cluding the base link and any extra links attached to the
robot to constrain or measure its motion; J = number of
joints, including those of any additional linkage added for
calibration; and Di = number of constraints at joint i. For
a rotational or prismatic joint Di = 5, while for a ball
or spherical joint Di = 3. For an external measurement
system for a freely moving end effector D,J = 0, while
for rigid attachment of the end point Dj = 6.

The total number of sensors S in the joints can be
written as 

where Si = the number of sensed degrees in joint i. We
impose the restriction Si ~ 6 - Di (i.e., there cannot be
more sensors than degrees of freedom at a joint). Usually
S2 = 1 for the lower-order pairs typical of actuated
joints, while Sj = 6 for full pose measurement of the
end effector &dquo;joint&dquo; J. For an unsensed joint, such as in
passive environment kinematics, Sz = 0.

Calibration can proceed if S > ll~l-that is to say,
there is redundant sensing with regard to positioning
of the chain. The excess of sensed joints over mobility
represents the number of equations per pose that can be
used for calibration:
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Fig. 1. Laser tracking system with orientation measure-
ment. (From Vincze et al. ~~ 994]).

where we term C the calibration index. If P is the num-

ber of poses, then GP is the total number of equations
for the calibration procedure. Clearly a larger C means
less poses are required, other things being equal.

For the single-loop case consisting of a series of sensed
lower-order robot joints ( S.1 = 1, Di = 5, i = 1, ... , J-1 )
with a final joint (5,~, D,~) connecting the end effector to
ground, one has from eqs. (11) and (13):

This equation shows the equivalence of end-point sensing
and end-point constraints for calibration purposes.

3. Categorization by Calibration Index
We now categorize kinematic loop methods based on the
calibration index C (13). For each value of C, both open
and closed single-loop examples are given; in view of
(14), these are discussed in terms of end-point sensing 5J
and constraints Dj. When they exist, multiple closed-loop
examples are discussed as well, in this case in terms of S
and M. These examples are representative of recent work
and are not meant to be exhaustive.

3.1. C = 6

For single open-loop calibration with full pose measure-
ment, then Dj = 0 and SJ = 6. One of the most in-
teresting recent devices for full pose measurement is the
single-beam laser tracking system in Vincze et al. (1994).
The robot is fitted with a retroreflector, and the laser
beam is deflected by a mirror on a universal joint (Fig.
1). Position is measured using interferometry, as usual.
The novel aspect is orientation measurement, by imaging
of the diffraction pattern of the edges of the retroreflector.
Orientation resolutions of arcsec are stated, and motions
can be tracked that accelerate at 100 nVs 2

Masory et al. (1993) proposed the use of full pose
measurement along with leg length measurements in the
calibration of a Stewart platform (S = 12 and M = 6).
The procedure is a simple extrapolation from single-loop
calibration.

For single closed-loop calibration (SJ = 0) with rigid
attachment (Dj = 6) of the end point to the environ-
ment, all six loop closure equations are used, and the
regular open-loop calibration procedure is applied with
the measured location defined to be zero in position and
orientation (Bennett and Hollerbach 1988).

3.2. C = 5

Lau et al. (1985) presented a steerable laser interfer-
ometer with steerable reflector. With pitch and yaw
measurements, the steerable interferometer yields all
three components of position, while the steerable reflec-
tor yields two components of orientation (Sj = 5 and
DJ = 0).

Bennett and Hollerbach (1989; 1991) considered a ma-

nipulator opening a door (SJ = 0 and Dj = 5). The
door hinge angle is unsensed and must be eliminated by
manipulation of the equations to leave five equations per
pose. Giugovaz and Hollerbach (1994) implemented this
procedure on the Sarcos Dextrous Arm; a hinge was em-
ployed to mobilize the elbow joint, which otherwise does
not move during self-motions for redundant anthropomor-
phic manipulators with fixed end points.
Wampler et al. (1995) calibrated a Stewart platform

(M = 6) via a closed-loop procedure. In addition to leg
length measurements, all angles on one of the legs were
measured (S = 11).

3.3. C = 4

We do not know of any published single-loop open or
closed method for C = 4. Conceptually, an example in
the open-loop case would be precision points involving
peg-in-hole insertion, where depth and orientation are
not specified. Inserting a round peg into a number of
round holes in known relative locations on a table or

plate would be involved.
In the closed-loop case, motion along a line with ori-

entation constraint leaves four equations per pose. For
example, the door above could also slide up and down
on its hinges. Another example is a door handle turning
along with the door swinging.

Bennett et al. (1990; 1991) showed that the closed loop
did not need to involve physical linkages but could be
formed by optical paths as virtual limbs to a stereo cam-
era system. An uncalibrated stereo camera system could
be simultaneously calibrated with an uncalibrated manip-
ulator. Besides the two readings from its detector, each
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Fig. 2. A robot touching fixed fiducial points, whose relative locations are not necessarily known, in a number of ori-
entations. (With permission from Craig ~19g3J).

camera was considered to have an instrumented azimuth

axis (S = 12 for a 6-DOF arm). The ray from a tracked
end point on the manipulator to the camera could be con-
sidered a link with a 3-DOF unsensed spherical joint at
the end point, an unsensed sliding joint, and the 2-DOF
sensed detector coordinates. Although not noted in the
article, the system of manipulator with two cameras could
be considered as a two-loop closed chain. Each camera,
including the instrumented azimuth axis, can be consid-
ered a 7-DOF mechanism, and with the 6-DOF arm, then
Al = 8. The loop closure equation was considered as
the difference between the end-point pose predicted by
the manipulator versus that by the cameras, but it follows
that two of the six equations used in Bennett et al. (1991)
must have been redundant.

3.4. C = 3

Basic triangulation systems provide point measurements
(SJ = 3 and DJ = 0). A recent novel device, presented
by Renders et al. (1991), comprised a large-motion linear
slide with small-motion orthogonal linear motions.

Bennett and Hollerbach (1989; 1991) considered point
contact or manipulation of an unsensed ball joint (Sj = 0

and DJ = 3). Fliminating the unsensed DOFs is easy
in this case, because the kinematic equations (8) decom-
pose naturally into position and orientation equations.
Thus, simply throw away three of the six equations in
(8) having to do with orientation. Craig (1990; 1993) de-
veloped a variety of closed-loop methods, including the
point contact case. A fiducial point on the end effector is
touched to a fiducial point in the environment with sev-
eral different orientations (Fig. 2). In an early instance of
a closed-loop method, Tang (1986) proposed a two-stage
method in which the angle parameters are calibrated by
placing an end effector-mounted block face to face on a
planar surface at several positions; this planar contact pro-
vides three constraints. Length parameters were calibrated
via an open-loop approach by measuring the position of
the block on the plate. If only the angle parameters are
to be calibrated, then other approaches that constrain or
measure orientation are conceivable-for example, us-
ing an inclinometer (or triaxial accelerometer or wrist
force/torque sensor).

Hollerbach and Lokhorst (1993; 1995) autonomously
calibrated a commercial hand controller with two closed

loops (Fig. 3). The parameters determined were the joint
angle gains and offsets as in (2) for the analog position
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Fig. 3. RSI 6-DOF hand controller.

sensing. For this mechanism, three 6-DOF arms attach
from a fixed frame to a handle (11~~ = 6). In each arm,
there is an unsensed spherical wrist and sensed upper arm
joints (S = 9). The unsensed wrist joints were eliminated
by formulating a fixed distance constraint between wrist
points. This approach is in principle the same as using a
fixed ball bar (Driels 1993), mentioned below for C = 1,
between neighboring wrist points, where the unsensed
spherical wrist joints are the kinematic equivalent of a
ball joint. With regard to avoiding the trivial zero-gain
solution to (2) mentioned earlier (Bennett and Hollerbach
1990), it was found that a small 10% attraction region
around the correct gains exists for convergence, without
assuming that one gain is known exactly. Wampler et al.
(1995) reanalyzed the data using a different numerical
method (see Section 4.5.2).

3.5. C = 2

Whitney et al. (1986) employed a single theodolite, which
provides two orientation measurements: S,j = 2 and
D J = 0. A reference length had to be sighted for scaling.
Zhuang et al. (1993) developed a closed-loop procedure

for calibration of a robot with a single camera mounted
on the end effector. With tracking of a distinguished point
in the environment, a single loop is formed, with Sj = 2
and DJ = 0. A more complicated lens model was em-
ployed than in Bennett et al. ( 1991 }, as radial distortion

was parameterized through a quadratic function. Un-
sensed motion along a line without orientation constraints
(S’,T = 0 and Dj = 2) leaves two equations per pose.
Newman and Osborn (1993) used a laser to define a line
in space; a retroreflector mounted on the end effector
reflects the laser light back to a four-quadrant detector,
whose output is used to servo the manipulator to track the
line.

Wampler and Arai (1992) presented simulations for a
two-loop planar mechanism comprised of three prismatic
legs with passive rotary joints at their ends attached to a
triangular stage (M = 3). Leg lengths plus attachment
angles for one leg were measured (S = 5).

3.6. C = 1

Several articles have recently appeared that require only
one component of pose to be measured (Sj = 1 and

Dj = 0). Goswami et al. (1993a,b) employed a ball bar
with linear extension measured by a Linear Variable Dif-
ferential Transformer (Fig. 4). Driels and Swayze (1994)
used a single wire potentiometer. Tang and Liu (1993)
employed a single laser displacement meter; this method
requires that the laser be positioned roughly perpendicular
to the flat surfaces of a stack of blocks and that the nomi-

nal parameter estimates are close to the correct estimates.
Nahvi et al. (1994) used a multiple-loop formulation

to calibrate a three-loop redundantly actuated shoulder
joint (NI = 3 and S = 4). Boulet (1992) applied closed-
loop calibration to a mechanical two-loop system formed
as a single joint (M = 1) with two antagonistic linear
actuators (S = 2); this device was a precursor to the
shoulder joint above.
Zhuang et al. (1992) showed how a multi-beam laser

tracking system, such as the Chesapeake Bay Laser Sys-
tem, could be calibrated by a closed loop method. This
system uses triangulation to provide point measurements
(142~ = 3); it has three steerable laser interferometers with

retroreflector, but unlike the tracker in Lau et al. (1985),
the pitch-yaw measurements are not employed. The prob-
lems with a three-beam system are (1) the relative po-
sitions of the three steerable laser interferometers must
be known, and (2) interferometry provides only relative
displacement, and an initial length offset must somehow
be determined. Interestingly, by adding a fourth redundant
tracker (S = 4), both the relative locations of the trackers
and the initial offsets may be calibrated.

Driels (1993) employed a ball bar with known length
that had unsensed spherical joints at each end. The length
constraint on the ball bar yielded one calibration equation
for each pose (S,J = 0 and Dj = 1). It is interest-

ing to compare this technique to that used by Goswami
et al. (1993a,b), which employs an extendable ball bar
with measured radial distance. An advantage of the
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Fig. 4. Telescopic ball bar. (With permission from
Goswami et al. 1993b [&copy;IEEE]).

fixed-length ball bar is the lack of instrumentation; an
advantage of the variable-length ball bar is the automatic
adjustment to particular end-point positions and a larger
set of reachable poses.

4. Numerical Methods

The final calibration accuracy will depend on the nu-
merical methods employed. This section considers least
squares methods, task variable scaling, parameter scaling,
rank determination, pose selection, and handling input
noise. We begin by describing the nonlinear iterative least
squares method normally used to estimate the kinematic
parameters.

Because robot kinematics (6) are only mildly nonlinear
(Schr6er 1993), linearization is an effective means for
iteratively solving the nonlinear optimization and for
qualitative analysis.

where Ax is the error between measured and computed
end point position and orientation, C is the gradient or
Jacobian, and .6.ø is the correction to be applied to the

current parameter estimate. The ordinary least squares
solution minimizes the performance index

The well-known solution is:

This procedure is iterated until the corrections 0¢ to 0
are sufficiently small. For linearization of the closed-loop
equations (8), one can use (15) exactly as before. When
the manipulator is placed in different configurations with
fixed end point, an incorrect kinematic model will make
the end point appear to move from this fixed point. The
deviation Ax from this fixed point is what is used in (15).

With the mix of DH and Hayati parameters, it is nec-

essary to use the Levenberg-Marquardt algorithm rather
than the straight Newton’s method for optimization when
initial parameter estimates are not accurate, because the

singularity for either link labeling (parallel axes for the
DH parameters, perpendicular axes for the Hayati para-
meters) is often encountered during the nonlinear search.
We should also briefly mention that the Jacobian C

should not be computed directly, but for efficiency should
be formed from the screw Jacobians in terms of the para-
meters, premultiplied by a transformation that converts
from differential orthogonal rotations to differential Euler
angles (Bennett and Hollerbach 1991). To avoid problems
in computing Euler angles from rotation matrices and in
’ computing the Euler angle error, it is actually best not to 

_

use differential Euler angles at all, but rather differential
~I orthogonal rotations that directly relate to the screw Ja-
cobian matrices. These differential orthogonal rotations
can be computed directly from the difference between
measured and computed rotation matrices (Hollerbach and
Bennett 1988).

4.1. Task Variable Scaling

Scaling is important for good numerical performance but
has not received much attention in the calibration litera-
ture. The problem of task variable scaling is well known:
when performing a least squares analysis on the end-point
pose error, position errors and orientation errors have to
be combined. Furthermore, not all position or orientation
components may be measured with equal accuracy. An
ordinary least squares method (16) weighs all task vari-
ables equally. To weigh these variables differently, the
general solution is left multiplication of (17) by a scaling
matrix G (Lawson and Hanson 1974):

 © 1996 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at UNIV OF UTAH on November 19, 2007 http://ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com


581

Then minimize the weighted index

The well-known weighted least squares solution is:

where W = diag(W¡,..., Wm). Often each Wj =
diag(W2,..., W2) is a diagonal weighting matrix.

4.1.1. Radians Equal Meters?

One way to choose the weighting matrix W is to use a
priori information about acceptable relative errors. Such
information might arise from specifications of the mea-
surement apparatus. For example, Hollerbach et al. (1993)
used a commercial magnetic sensor (the Bird sensor, As-
cension Technology, Burlington, VT), which has a stated
translational accuracy of 2.5 mm and a rotational accu-

racy of 10 mrad. Thus, set wi, w2, and W3 to 1/2.5 mm =
400/m and W4, W5, and w6 to 1/10 mrad = 100/rad.

In another approach, one should not expect to control
end-point orientation better than the joint angle. If 0 is
the joint angle resolution, then s = r8 is the resulting
end-point position resolution. For human-sized arms,
r = 1 m and hence s = 8. It seems that meters and

radians are directly comparable after all! Thus, using no
scaling factors for the pose parameters makes some sense
and may explain why the general disregard for scaling
in the robotics community has not resulted in disaster.
Of course, if linkages are much smaller (like fingers)
or much larger (like excavators), then the situation is
different.

4.1.2. Gauss-Markov Estimate

A principled way of task variable scaling is to use the un-
certainty uf in each task variable measurement rz, should
this be known: each u,~2 = 1 /~i for 1 < i < 1~ measured

pose components. The standard deviations ag are not
necessarily the same as end-point measurement accuracy,
because model errors and input noise also contribute to
the error equation (17). The remainder of the article as-
sumes that a Gaussian distribution is a reasonable model
for measurement error and parameter variation.

In general, the measurement errors are not independent,
and one must use the covariance matrix R = cov(x). If
R = FFT is its Cholesky factorization, then define the
weighting matrix W = F -T F- 1. The weighted sum of
squared errors then becomes (Lawson and Hanson 1974):

This corresponds to left multiplication of (17) by the
matrix F-1 to yield:

The performance index (22) is a XZ statistic, whose mini-
mization for Gaussian distributions leads to the maximum

likelihood estimate (Bevington and Robinson 1992; Press
et al. 1992):

This solution is variously called the Gauss-Markov esti-
mate, the generalized least squares estimate, or the best
linear unbiased estimator (BLUE) (Norton 1986). It is
the minimum covariance estimate (on the parameter error)
of all unbiased estimators. A significant point is that
cov(OX) = I (i.e., the uncertainty in components of Ask
are about the same size). Hence, the Euclidean norm of
the error vector ~i is a reasonable measure of its size.

Often we do not know the covariance matrix R that

well. One approach is to uniformly scale an initial esti-
mate of R after a preliminary calibration, based on the
value of X2 (Bevington and Robinson 1992; Press et al.
1992). The expected value of x2 is v = mk - r, where
m is the number of poses, 1~ is the number of pose com-

ponents, r is the number of estimated parameters, and v
is called the degrees of freedom. Thus, scale R by v/X~.
Another approach is to treat the elements of R as addi-
tional variables to be estimated when (22) is minimized.
The solution is then a pair of coupled nonlinear equations
(Norton 1986) that yields both Ao and R.

4.2. Parameter Scaling

With regard to parameter scaling, in related applications
such as redundancy resolution, problems created by im-
proper scaling of joint variables have been identified
(Doty et al. 1993). For example, sliding joint and rotary
joint variables cannot be directly combined when find-
ing the minimum-norm least squares solution to the joint
rates. In kinematic calibration the least squares problem
is overconstrained, and hence there is no parameter null

space that can be added to a nominal parameter solution
to adjust some norm. Nevertheless, scaling is important
for proper convergence in nonlinear optimization and for
singular value decomposition. One wishes to examine
the singular values for such reasons as optimum poses
selection (Borm and Menq 1991) and elimination of re-
dundant or unidentifiable parameters (Schr6er 1993). Yet,
if parameters have vastly different magnitudes, then the
singular values are not directly comparable. Another use
of parameter scaling is incorporation of a priori informa-
tion about likely parameter values into the performance
index.
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Whereas left multiplication of the Jacobian C in (23)
results in task variable scaling, right multiplication of
C by a weighting matrix H results in parameter scaling
(Lawson and Hanson 1974):

4.2.1. Column Scaling

The most common approach toward parameter weight-
ing is column scaling, which does not require a pri-
ori statistical information. Define a diagonal matrix
H = diag(hl, ... , hr) with elements

where ci is the jth column of C. Then (25) becomes:

Suppose Ax has been previously normalized; then its
length is meaningful. Each c~/~~c~ II is a unit vector, and
hence each 0~~ ~~c~ is about the same size and has the
same effect on Ax.

Schr6er (1993) identified a problem with column
scaling-namely, that bad identifiability of parameters
can result in very small Euclidean norms, which result in

very large scaling factors. This results in strong ampli-
fication of uncertainties of C. Instead, Schr6er proposes
scaling based on the effect on the anticipated error of the
robot (say, 1 mm). From (17), for each pose i the end-

point error due to the parameter component change ~¢~
is:

where c’ is extracted from c? . The scaling factor no’ is

defined as that parameter deviation that causes a 1-mm

end-point displacement; i.e.,

The pose displacement Ax’ must have been previously
normalized; alternatively, just use its first three position
components. The scale factor a4) is clearly pose depen-
dent. The most conservative estimate ooj over all poses
is called the extremal scaling value (Schr6er et al. 1992;
Schr6er 1993):

Then define the scaling matrix H = diag(uol,..., oq5,).

4.2.2. Scaling by Parameter Covariance

In an ideal case, one would have a priori knowledge of
the expected value 4>0 of the parameter vector and the
standard deviation Q~ of each of the parameter vector
components. Define 0 = 4>0 + r/~e, where 0 is the true
parameter value vector and 0, is the error (Wampler et
al. 1995). Incorporate 00 as constants into (6), which
then becomes x = f(<~e)- The problem now is to es-
timate the error ~e by iterative least squares, adding
corrections Ao, as in (18). Define a weighting matrix
H = diag(o-,O,...,cO) in (25).
More generally, the parameter distribution would be

described by a covariance matrix M = cov(~e). As be-
fore, one can find a Cholesky factorization M = HH T
and this H can now be applied in (25) to yield a scaled
ol~ = H-~~e. Then cov(~,) = I, and hence the para-
meters are scaled evenly and are now comparable.

After calibration, a revised estimate M of the covari-
ance can be derived from the data (Norton 1986). This
estimate can be used for subsequent singular value de-
composition analysis for rank reduction. Assume that the
task variables Ax have been previously scaled for equal
uncertainty ff, that there is no bias (Ee = 0), and that the
errors are uncorrelated (cov(e) = Q2I). Then

where again an unbiased estimator for a2 from (22) and
(24) is &2 = X2/v. This equation is also valid if C is
replaced by C from (23).

4.2.3. Damped Least Squares

Ordinary or weighted least squares treat parameter values
as completely unknown (i.e., they could be anywhere in
the range from -oo to +00). Yet often a fairly good ini-
tial estimate of the parameters is available-for example,
from a manufacturer’s specifications or in case of a re-
calibration. It makes sense to incorporate such an a priori
preference 4>0 into the least squares optimization (Law-
son and Hanson 1974). To capture the notion of nearness,
scale the squared parameter residual by a matrix K. Then
augment the weighted least squares criterion:

The constant A is a relative weighting factor that one may
choose based on confidence in the nominal solution. This

formulation has the form of damped least squares, with
solution

Another use of damped least squares, when K = I, the
identity matrix, is to circumvent singularities in the DH
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parameterization during iterative search (Bennett and
Hollerbach 1991).
When A = 1 and the end-point errors and parameter

deviations are both weighted by their uncertainties, the
performance index (32) is again a ~z statistic:

Its solution is the minimum variance estimate, which,
unlike (24), is biased:

The Kalman filter recursively solves the same problem
(Luenberger 1969; Sorenson 1970): when the state is
nonvarying, there is a constant process, and there is no
process noise (Mooring et al. 1991; Roth et al. 1987).
The Gauss-Markov estimate is the limiting case when
M-1 is zero (i.e., there is no a priori information about
the parameters). Again, there is an issue of determining
the covariances. As for the Gauss-Markov estimate, the

expected value of x2 can be used to uniformly scale R
and M post facto (Bryson and Ho 1975).

4.3. Rank Determxnation

Once all parameters have been scaled, singular value
decomposition can be properly used to determine identi-
fiability of the kinematic parameters because the singular
values are now comparable.

where C has dimensions p x q, U is a p x q column-
orthogonal matrix, V is a q x q orthogonal matrix, and
L = diag(/1l,... #r , 0, . , . , 0) is the q x q matrix of
ordered singular values, with /11 the largest and ~cr the
smallest nonzero singular value.

Especially when complex joint models are assumed that
include flexibility, backlash, and gear eccentricity, it is
not clear that all parameters can be identified. Retaining
poorly identifiable parameters will degrade the robustness
of the calibration; such parameters are indicated by zero
or very small singular values. The expansion of (15) in
terms of (36) is

where uj and vj are the jth columns of U and V. For
zero or small singular values /~, the projection v~ &copy;~
of the parameters onto the column vector vj represents a
linear combination of parameters that cannot be identified

independently. Three methods to proceed are as follows:

1. Explicitly removing poorly identifiable parameters
by analyzing these linear combinations. With the
parameters properly scaled using extremal scaling
values, Schr6er (1993) suggests the heuristic that the
resulting condition number should be less than 100:

This heuristic derives from their experience and
from that of their statistical community. To proceed
by eliminating parameters, examine the linear sums
(37) corresponding to the smallest singular value
Pro Sometimes it is obvious which parameter in the

projection should be eliminated, but often it is not,
because the parameters may not differ that much
in magnitude. Scbr6er (1993) suggests the use of
sensitivity values ’ ~ for each parameter, defined
as follows. In (31), for the purposes of relative

comparison between parameters, assume a = 1.

Then J) is the root of the jth diagonal element
of cov(Oc~). These standard deviations are made
dimensionless by using the mean scaling values

6~0j, the mean of all values (29) over all the poses:

The sensitivity value ~Q~ normalizes the parameter
standard deviations U) by their mean scaling values
3§_j :

Parameters with the largest sensitivities are candi-
dates for elimination. In this procedure, the unscaled
singular values are employed.

2. Zeroing small singular values. One may proceed
without first removing parameters. For weighted
least squares the solution to (21) is (Press et al.
1992):

If jL j is zero or very small, then set 1 /,cc~ = 0.
3. Incorporating a priori parameter estimates. For

damped least squares, no explicit action on the
singular values is required, because the damping
factor modifies the singular values; for example, for
K = I in (33), then
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Hence, a very small ~C~ is counteracted by the larger
A value; then the a priori information about para-
meter values dominates the information from the
data (i.e., the data are ignored).

4.4. Pose Selection

Good pose sets should lead to the best observability of
the parameters (i.e., the most accurate estimates). Major
approaches toward quantifying observability involve an
analysis of the singular values (36): the observability
index (Borm and Menq 1991), the condition number
(Driels and Pathre 1990), and the minimum singular value
(Nahvi et al. 1994).
Assume that the rank has been determined and is r.

Borm and Menq (1991) have proposed the observability
index OBM, which maximizes the product of all of the
singular values:

The rationale is that O~~ represents the volume of a
hyperellipsoid in Ax, defined by (15) when &eth;.4J defines a
hypersphere, and the singular values from (36) represent
the lengths of axes. Therefore, maximimizing OBNI gives
the largest hyperellipsoid volume and, hence, a good
aggregate increase of the singular values. One can also
derive OBM from the well-known relation vldct(CTC)
Y&dquo;1 ... Fr.

Driels and Pathre (1990) have proposed minimizing the
condition number of C as a measure of observability:

This measure addresses the eccentricity of the hyperellip-
soid rather than its size. The intermediate singular values
are not considered to be that pertinent, because minimiz-
ing the condition number automatically makes all singular
values become more similar in magnitude and makes the
hyperellipsoid closer to a hypersphere.

Nahvi et al. (1994) argue for maximizing the minimum
singular value /1r as an observability measure:

The rationale is to make the shortest axis as long as
possible, regardless of the other axes-that is to say, to
improve the worst case. Consider the following standard
result: 

11 ~ 11

or more particularly,

Then maximizing lC~. ensures that a given size of para-
meter errors ]] A$]] has the largest possible influence on
the pose errors ~x~ ~ . Hollerbach and Lokhorst (1995)
applied these three observability measures and found that
the condition number and the minimum singular value
gave about the same good result: their relative magni-
tudes were almost proportional to the rms errors of the
final parameter errors. The observability index O~M was
not as sensitive and not directly related to rms parameter
errors.

These observability measures have direct parallels
in the literature on dexterity measures for redundancy
resolution of manipulators (Table 1). The manipulabil-
ity index det(JJT ) = p ~ ~ ~ pi has been proposed
(Yoshikawa 1985) to quantify configurations, where J is
the rank I Jacobian and the pjs are its singular values.
The manipulability index is directly analogous to the ob-
servability index OBM, as they both involve the product
of the singular values. When the manipulability index is
zero, the manipulator is at a singular configuration, but it
has been argued that the actual value of the determinant
cannot be used as a practical measure of ill condition-
ing (Klein and Blaho 1987). Alternatively, the condition
number x(J) = fii /gLi was proposed in Salisbury and
Craig (1982), and the minimum singular value in Klein
and Blaho (1987). A comparative analysis by Klein and
Blaho (1987) of all three dexterity measures concluded
that the manipulability index had some disadvantages,
while the condition number and minimum singular value
gave good quantitative results and were complemen-
tary. This seems to accord with the results of Nahvi et
al. (1994).

4.5. Handling Input Noise

As mentioned earlier, in the least squares formulation (17)
only output noise (in the measured pose components) is
considered. If input noise (in the joint angles) is signifi-
cant, then bias errors may result; the Appendix provides
a synopsis from Norton (1986) that demonstrates this im-
portant fact. With few exceptions, this potential problem
does not yet appear to have been generally addressed in
the calibration literature.

As a simple example, consider the linear equation
y = ax, where only the slope a is to be determined. If the
uncertainties in the input/output variables are ~~. and (7~,
then the weighted normal distances from points (xi, yi) to
the line are minimized:

which is a X2 statistic (Bevington and Robinson 1992;
Press et al. 1992). To solve this equation, Press et al.
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Table 1. Analogies between Dexterity Measures for Redundancy Resolution and Observability Measures for Pose
Selection.

(1992) proposed an iterative nonlinear optimization proce-
dure.

The formulation and solution of equations such as (48)
have appeared under various names and guises over the
years, including total least squares (Van Huffel and Van-
dewalle 1991), orthogonal distance regression (Boggs
et al. 1987), or errors-in-variables regression (Fuller
1987). One common application is to fit a plane to a
set of measured 3D points; all three components of mea-
sured position have noise. For example, this problem
arises when measuring multiple points on an end effec-
tor and establishing a coordinate system (e.g., An et al.
1988). Another example is circle point analysis, where a
plane is to be fitted to the circle of points generated by
moving a single joint (Mooring et al. 1991). Total least
squares solves such equations analytically using singular
value decomposition, making unnecessary the iterative
solution proposed in Press et al. ( 1992).

4.5.1. Nonlinear Total Least Squares

Even more pertinent to kinematic calibration, nonlinear
versions of the total least squares problem have been de-
veloped. As another simple example, suppose we are now
trying to fit a scalar function y = f (~, a) by adjusting
some parameters a (Boggs et al. 1987). Assuming again
equivalent error in :~ and y measurements, we should
minimize the Euclidean distances from the measurements
to the fitted curve f (Fig. 5).

Particularized to calibration, the underlying forward
kinematics function derived for all poses from (3) is
written to reflect both the input 0~ and output Ax mea-
surement errors:

where again g = (g],..., g~) is the stacked vector for
all poses. Let the covariances of the input and output
variables be R = E(.6.x.6.xT) and P = E(O~a~T). Then

Fig. 5. Fitting a curve y = f (~, a) with both input and
output errors.

we minimize the weighted orthogonal squared distances
from the measurements (x, 1jJ) to the multidimensional
surface represented by x = g(1jJ, ~):

subject to (49). The solution proceeds by substituting (49)
into (50) to eliminate Ax:

which is an unconstrained optimization problem, solved
as usual by linearization and iteration (Schwetlick and
Tiller 1985).

Such an approach for robot calibration was taken by
Zak et al. (1994), who augmented the output variance in
the linearized equations (23) with the transformed input
variance as follows:

where J = diag(J~, ... , J~ ) is a block-diagonal matrix
whose elements J’ vy are the Jacobians of gi with regard
to the joint angle sensors 0 at pose i. This weighting
equation is the generalization of the weighting in (48).
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Zak et al. (1994) then apply the Gauss-Markov estimate
(24) iteratively, at each step treating J (which contains
the unknown parameters) as a constant matrix based on
the current estimates, and obtaining the Gauss-Markov
estimate (24) with the modified R.

4.5.2. lmplicit Loop Method

Renders et al. (1991) and Wampler et al. (1995) proposed
methods for kinematic calibration equivalent to nonlinear
total least squares, with the addition of a priori para-
meter estimates as in damped least squares. Following
the development in Wampler et al. (1995), an implicit
equation results from the unifying view of open-loop
kinematic calibration methods as closed-loop methods.
Because end-point measurements are considered as a
joint, all measurements, whether from joint angle sensors
or end-point sensors, are grouped together into a vector
x = xo + x,, where xo is the measurement and x, is the
measurement error. Also, set 0 = cPo + c~e. Incorporate
xo and 00 as constants into the loop closure equation (9),
which is then a function f~(Xe, cPe) = 0. The maximum
likelihood estimate minimizes

subject to ~(x,, 0,) = 0, where E(xex~) = R.
This minimization problem is solved by linearization

of the constraints and iteration. Let the scaled variables

y and q be defined via x, - Rl/2y and ~e = Ml/2q,
where the superscript 1/2 means the symmetric square
root. Iterate from an initial guess y = 0 and q = 0 to find
corrections Ay and Aq to minimize

subject to the linearized constraints

,- - /

Compute the QR-decomposition QR = jT (this is actu-
ally done individually for each pose) and define

The variables Ay are eliminated and the step in q found
from: 

I- - -i r - -Ir~, r~,

and the updated error estimates are

Covariance matrices are again scaled post facto based on
the value of X2.

Fig. 6. Excavator with calibrator.

Because the loop closure equation (9) is an implicit
function of all measurements, Wampler et al. (1995)
coined the term implicit loop method. Whereas in non-
linear total least squares (50) the output errors could be
directly eliminated by using the explicit constraint equa-
tion, for the implicit loop method the linearization of the
implicit constraint equation was required for this elim-
ination. The earlier approach of Renders et al. (1991)
deals only with open-loop calibration of serial arms; the
resulting explicit constraint equation is incorporated using
Lagrange multipliers rather than using variable elimina-
tion as in (50). As in Zak et al. (1992), linearization is at
nominal values, whereas in the implicit loop method the
unknown parameters from the linearization also come into

play.

5. Screw Axis Measurement

Screw axis measurement methods proceed quite differ-
ently from the kinematic loop methods. Each joint axis
is identified as a screw (i.e., as a line in space). From a
knowledge of all of the joint screws, the kinematic para-
meters can be quite straightforwardly extracted.

5.1. Circle Point Analysis

The main screw axis measurement method has been circle

point analysis (CPA), where each joint is moved individ-
ually in a circle (Mooring et al. 1991). The normal of the
plane in which the circle lies and the center of the circle
define the joint screw. In the past, position measurements
of a point on the end effector have been used to define
each circle (Stone 1987). In biomechanics, CPA is often
performed to find the instantaneous center of rotation of a
joint (Woltring et al. 1985).

In Khoshzaban et al. (1992), a teleoperated log-loader
with four unsensed joints (joints 1--~ in Figure 6) was
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calibrated using an additional 7-DOF linkage termed a
calibrator. Joints 5-8 of the calibrator are sensed, where

joint 5 is attached to the grapple; the ball-joint attachment
to the base is a 3-DOF unsensed joint. The log-loader
arm joints are moved one at a time for calibration. The
authors were successful in formulating a recursive closed-
loop procedure to effect the calibration, working from
distal to proximal log-loader joints. Using the same data,
it would also have been possible to formulate a CPA
approach. The fixed base could be considered to be at the
grapple, and the ball-joint could be considered as moving
in a circle with individual log-loader joint movement.
The 3D position coordinates of the ball joint would be
provided by the measured calibrator joints.

Instead of direct position measurement, another ap-
proach to CPA is the use of a triaxial accelerometer at
the end point (Canepa et al. 1994), whose output is inte-
grated. With the highly accurate accelerometers currently
on the market, precise calibration appears possible. Their
advantage is portability and lack of viewing constraints.
One complication in CPA is that there has to be a guar-

antee that the nonmoving joints are indeed stationary. If
the joint has gears, a brake on the output shaft would be
necessary. If the brake is on the input shaft, gear deflec-
tion during motion would change the joint angle. If there
is no brake, a very stiff servo with integral control would
be necessary, and sufficient settling time must be allowed.
If measurements are to be taken during a trajectory, then
some form of iterative learning scheme is probably nec-
essary (An et al. 1988). Perhaps as a result, to date CPA
has been applied only to the geometric factors.

Another limitation is that the base parameters si and 01
cannot be determined, because in the first joint screw the
axis xo does not play a role. The problem is not serious,
because the base coordinate location is arbitrary, and so
are these parameters.

Different procedures have been proposed to extract the
kinematic parameters from a knowledge of the joint axes
(Mooring et al. 1991; Stone 1987). An elegant method
has been put forth by Sklar (1989), not well publicized
except in Mooring et al. (1991). Let each joint screw Sj
be represented as

where zj-l is the joint j axis vector and bj is a vector

from this axis to a fixed reference frame, such as the
end point or an external measurement system. Then the
reciprocal product of adjacent screws (Roth 1984), called
the mutual moment by Sklar ( 1989), when evaluated in
terms of Denavit-Hartenberg (DH) parameters is

where aj is the skew angle and aj is the distance along
xj between z,? _ ~ and z.1’ By definition, xj points in the
direction of Zj from z j- j ; hence a; by construction is
never negative. Yet we cannot determine from zj- i x zj =
xj sin aj which way xj should point. The mutual moment
(60) yields this information: if negative, then the direction
is zj- x zi; if positive, z. x z~_ ~ . If ,S~ o Sj+l = 0, then
one can determine from ~z.~ _ ~ x zj - cosaj whether aJ =
0 or sin aj = 0. Thus, we can tell the quadrant of a
and whether the joint axes intersect or are parallel. The
remaining DH parameters are straightforwardly found.

For numerical stability, one again wishes to mix the
Hayati parameters with the DH parameters for the case
of nearly parallel joints. The details that handle all the
various cases are presented in Bennett et al. (1992).

5.2. Jacobian Measurement Method

Besides CPA, another screw axis measurement method is
the Jacobian measurement method (Bennett et al. 1992;
Hollerbach et al. 1993). The screw Jacobian Ja matrix for
an 77 &dquo;joint manipulator has the form

Thus, the columns of Js are the same joint screws (60) as
determined by CPA. If one can numerically estimate this
Jacobian, then one obtains all of the joint screws at the
same time. The Jacobian matrix can be measured in one
of two ways:

1. Simultaneous measurement of the end-point force
f and torque n, using a wrist sensor, and of joint
torque sensing T. For a static manipulator, one has
the well-known relation

where g is the gravity torque vector. The bias of
gravity can be eliminated by subtracting a reference
exertion. By generating at least six independent
wrenches for a 6-DOF manipulator, the relation (62)
may be solved for J~. Interestingly, the manipulator
is completely stationary during the calibration.

2. Simultaneous measurement of the end-point linear
v and angular velocity and of the joint angle
velocity % through the well-known relation:

By making at least six independent measurements
through the same pose, the Jacobian may be esti-
mated.
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In Hollerbach et al. (1993), the Jacobian measurement
method was implemented on the Sarcos Dextrous Arm by
using joint torque sensing and wrist force-torque sensing.
At the present time, the results are limited by the accu-
racies of these sensors. For example, wrist force-torque
sensors are known to suffer from cross-coupling effects; a
nominal accuracy of 0.5% for on-axis forces and torques
can degrade to 3% to 4% for off-axis loading (Hirose
and Yoneda 1990). With regard to joint torque sensors,
the use of optical sensing may improve future accuracy
(Hirose and Yoneda 1989).

With improvements in inertial sensors, the use of end-
point velocity sensing could potentially be sufficiently
accurate. This method has not yet been implemented.

5.3. Other Methods

In Zhuang and Roth (1993) a linear identification method
was presented that is neither a kinematic loop method nor
a screw axis measurement method, but is listed here be-
cause it shares the feature of CPA of moving one joint at
a time. The orientation parameters are determined before
the displacement parameters. If the orientation parameters
are known, the displacement parameters are determined
by ordinary least squares since they appear linearly in the
forward kinematics. The orientation parameters are deter-
mined recursively by moving each joint to two positions,
beginning with the base. At each of the two positions, the
full end-point pose is measured. A matrix equation is sub-
sequently solved for the orientation parameters for each
joint.

In Ma et al. (1994) a procedure was proposed for joint
torque sensor calibration, using the arm’s own gravity
loading and the sinusoidal relation between joint torque
and position. As a by-product, the joint angle gains and
offsets (2) are also determined. Even after the DH para-
meters have been determined, the determination of these
joint angle parameters must often be repeated because
of drifts in the electronics for analog joint sensing. The
relation to CPA is in the sense that each joint is moved in
a circle one at a time.

IS. Conclusions

A taxonomy of kinematic calibration methods has been
proposed based on the calibration index. All calibration
methods are considered as closed-loop methods: for open-
loop methods, the measurement system is considered to
form a &dquo;joint.&dquo; In such closed loops, some degrees of
freedom are sensed (measured components of pose and
sensed joint angles), while others are unsensed (unmea-
sured components of pose, passive end-point constraints,
and unsensed joint angles). Measuring a component of
pose has the same effect in calibration as constraining

a component of pose; the term kinematic loop method
is therefore proposed to unify open- and closed-loop
methods.

The difference between the number of sensed joints
and the mobility in such closed loops is termed the cal-
ibration index and expresses the number of equations
per pose available for calibration. Despite the variety of
measurement systems and end-point constraints that have
been proposed in kinematic calibration, different methods
are now nicely comparable in terms of the calibration in-
dex. Recent work on multiple-loop mechanisms also fits
nicely into this taxonomy. It is also easy to conjure up
new calibration methods by choosing a calibration index
and different mixes of sensed and unsensed joints.
A synopsis of numerical issues that are critical for

accuracy in kinematic calibration was presented. Issues
of scaling of task variables and of kinematic parameters
were considered at length for purposes of normalization
and rank determination. Various performance indices for
least-squares analysis were categorized based on how task
variables or kinematic parameters were incorporated and
scaled, including weighted least squares, and the Gauss-
Markov estimate, damped least squares and the minimum
variance estimate. The use of singular value decomposi-
tion was examined for rank determination and for solution

of ill-conditioned least squares problems. Various mea-
sures of observability for pose selection were contrasted,
and an analogy was made to dexterity measures for re-
dundant robots.

Input noise in the joint angles, seldom considered in
the calibration literature, can be significant and is known
to lead to bias errors. For the constrained end effector

in closed-loop methods, there is essentially no output
noise, and the normal procedure for minimizing end-point
errors is inappropriate. Total least squares and orthogonal
distance regression are methods that handle input noise.
An instance in the context of kinematic calibration is the

implicit loop method (Wampler et al. 1995), which views
all calibration methods as closed-loop methods and places
all measurements, whether joint or end-point, on an equal
footing.

Screw axis measurement methods identify individual
joint axes as lines in space. Kinematic parameters can
then be found analytically, without the need for solving
a nonlinear optimization problem. Circle point analysis
is the major variant of screw axis measurement and pro-
ceeds by measuring end-point position during rotation of
one joint at a time. It can be viewed as an open-loop
method with this particular pose selection. Another
variant involves measuring the Jacobian matrix, either
with velocity sensing or with joint torque and end-point
wrench sensing. Joint angle offsets and gains can also be
determined using joint torque sensing, as a side benefit of
joint torque sensor calibration using an arm’s gravity load
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(Ma et al. 1994). It is interesting that measurements from
the realm of kinetics can assist in calibration in the realm
of kinematics.

Appendix
This appendix demonstrates that input noise causes biases
and is adapted from Norton (1986). Consider a system of
overdetermined linear equations

where the parameters 0 are to be estimated and the true
measurements x’ and C’ are both corrupted by noise:

where x and C are the actual measurements, and v and W
are mutually uncorrelated zero-mean noises. The regres-
sion equation is

where the error e = v - Wq5 is correlated with the input
noise W. The ordinary least squares estimator 1> of the
true parameters 0 is

The bias is defined as b = E[~] - 0, where E is the
expectation operator. Substituting for the estimator,

This complicated bias assumes a simpler asymptotic form
when the number M of measurements increases. The
result from Norton (1986) is stated without proof:

’I where &dquo;plim&dquo; stands for probability limit.
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